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Arnesano, 73100 Lecce, Italy

E-mail: simoni@na.infn.it

Received 20 December 2004, in final form 16 March 2005
Published 13 April 2005
Online at stacks.iop.org/JPhysA/38/3813

Abstract
We discuss transformations generated by dynamical quantum systems which
are bi-unitary, i.e. unitary with respect to a pair of Hermitian structures on
an infinite-dimensional complex Hilbert space. We introduce the notion of
Hermitian structures in generic relative position. We provide a few necessary
and sufficient conditions for two Hermitian structures to be in generic relative
position to better illustrate the relevance of this notion. The group of bi-unitary
transformations is considered in both the generic and the non-generic case.
Finally, we generalize the analysis to real Hilbert spaces and extend to infinite
dimensions results already available in the framework of finite-dimensional
linear bi-Hamiltonian systems.

PACS numbers: 03.65.Ca, 02.30.Sa, 02.40.Yy

1. Introduction

The general structures ruling the evolution of classical and quantum systems are not essentially
different. For instance both systems are Hamiltonian vector fields and both are derivations
on the Lie algebra of observables with respect to the Poisson bracket and the commutator
bracket respectively. Besides, in some appropriate limit, quantum mechanics should reproduce
classical mechanics [1]. So the question arises of which alternative quantum descriptions for
a given quantum system would reproduce the alternative classical descriptions of Hamiltonian
systems.These systems are usually known as bi-Hamiltonian systems. Completely integrable
systems are often associated with alternative compatible Poisson structures. We recall that by
compatibility is usually understood that any combination, with real coefficients, of the two
Poisson brackets satisfies the Jacobi identity. In this respect, we should remark that while
on a vector space the imaginary part of the Hermitian structures, i.e. constant symplectic
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structures, are always mutually compatible, this is not true for the full Hermitian structures.
In this case the compatibility of the complex structures gives non-trivial conditions even in the
vector space situation. As a matter of fact the complex structure, related to the indetermination
relation, plays no role in the classical limit of quantum mechanics [2].

In the study of bi-Hamiltonian systems one usually starts with a given dynamics and looks
for alternative Hamiltonian descriptions (see a partial list of references for classical [3] and
for quantum [4] systems).

In this paper we deal with a kind of converse problem [5], i.e. we start with two Hermitian
structures on a complex Hilbert space and look for all dynamical quantum evolutions which
turn out to be bi-unitary with respect to them. This study generalizes our previous results on
finite-dimensional bi-Hamiltonian systems in [6] to the infinite-dimensional case.

This paper is organized as follows. In section 2, we consider two Hermitian structures on
a finite-dimensional Hilbert space and show the equivalence of the following three properties
for the Hermitian positive operator G which connects them: the non-degeneracy, the cyclicity
and the genericity. A short description of a bi-unitary group is also given. In section 3, we
introduce the infinite-dimensional case recalling the direct integral decomposition of a Hilbert
space with respect to a commutative ring of operators, which is a suitable mathematical tool
to deal with such a situation [7]. In section 4, we extend to the infinite-dimensional Hilbert
spaces the analysis drawn in section 2. In particular, we prove that the component spaces in the
decomposition are one dimensional if and only if the Hermitian structures are in relative generic
position. Also, we show that this happens if and only if the operator G connecting the two
Hermitian structures is cyclic. This allows us to conclude that all the quantum systems, which
are bi-unitary with respect to two Hermitian structures in generic relative position, commute
among themselves. Moreover, the bi-unitary group is explicitly exhibited both in the generic
and the non-generic case. In section 5, the analysis starts from different complexifications of a
real Hilbert space to discuss the previous results in the light of the notion of compatible triples.
[6, 8]. In section 6 we discuss a simple example of some physical interest and finally, in the
last section, we draw a few conclusions.

2. Bi-unitary group on a finite-dimensional space

In quantum mechanics the Hilbert space H is given as a complex vector space, because the
complex structure enters directly the Schrödinger equation of motion.

Denoting with h1(., .) and h2(., .) two Hermitian structures given on H (both linear, for
instance, in the second factor), we search for the group of transformations which leave both
h1 and h2 invariant, that is the bi-unitary transformation group.

By using the Riesz theorem a bounded, positive operator G may be defined, which is
self-adjoint both with respect to h1 and h2, as

h2(x, y) = h1(Gx, y), ∀x, y ∈ H. (1)

Moreover, any bi-unitary transformation U must commute with G. Indeed

h1(x, U †GUy) = h1(Ux,GUy) = h2(Ux,Uy) = h2(x, y) = h1(Gx, y) = h1(x,Gy)

and from this

U †GU = G ⇔ [G,U ] = 0. (2)

Therefore, the group of bi-unitary transformations is contained in the commutant G′ of the
operator G.

To visualize these transformations, let us consider the bi-unitary group of transformations
when H is finite dimensional. In this case G is diagonalizable and the two Hermitian structures
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result proportional in each eigenspace of G via the eigenvalue. Then the group of bi-unitary
transformations is given by

U(n1) × U(n2) × · · · × U(nm), n1 + n2 + · · · + nm = n = dimH, (3)

where nk denotes the degeneracy of the kth eigenvalue of G.
The picture should be clear now. Each Hermitian structure on H defines a different

realization of the unitary group as a group of transformations. The intersection of these two
groups identifies the group of bi-unitary transformations.

In finite-dimensional complex Hilbert spaces the following definition can be
introduced [6]:

Definition 1. Two Hermitian forms are said to be in generic relative position when the
eigenvalues of G are non-degenerate.

Then, if h1 and h2 are in generic position, the group of bi-unitary transformations becomes

U(1) × U(1) × · · · × U(1)︸ ︷︷ ︸
n factors

.

In other words, this means that G generates a complete set of commuting observables.
Now, recalling that an operator is cyclic when a vector x0 exists such that the set

{x0,Gx0, . . . ,G
n−1x0} spans the whole n-dimensional Hilbert space, we show that

Proposition 1. Two Hermitian forms are in generic relative position if and only if their
connecting operator G is cyclic.

Proof. The non-singular operator G has a discrete spectrum and is diagonalizable so, when
h1 and h2 are in generic position, G admits n distinct eigenvalues λk . Let now {ek} be the
eigenvector basis of G and {µk} an n-tuple of nonzero complex numbers. The vector

x0 =
∑

k

µkek (4)

is a cyclic vector for G. In fact one obtains

Gmx0 =
∑

k

µkλm
k ek, m = 0, 1, . . . , n − 1. (5)

The vectors {Gmx0} are linearly independent because the determinant of their components is
given by (∏

k

µk

)
V (λ1, . . . , λn), (6)

where V denotes the Vandermonde determinant which is different from zero when all the
eigenvalues λk are distinct. The converse is also true. �

This shows that definition (1) may be equivalently formulated as

Definition 2. Two Hermitian forms are said to be in generic relative position when their
connecting operator G is cyclic.

The genericity condition can also be restated in a purely algebraic form as follows:

Definition 3. Two Hermitian forms are said to be in generic relative position when G′′ = G′,
i.e. when the bi-commutant of G coincides with the commutant of G.

Equivalence of definitions (3) and (1) is apparent.
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The last two equivalent properties of G are readily suitable for an extension of the
genericity condition to the infinite-dimensional case while, at a first glance, the definition
based on non-degeneracy of the spectrum of G looks hardly generalizable.

3. Decomposing an infinite-dimensional Hilbert space

Now we deal with the infinite-dimensional case, when the connecting operator G may have a
point part and a continuum part in its spectrum.

As regards to the point part, the bi-unitary group is U(n1) × · · · × U(nk) × . . . , where
now nk may also be ∞. When G admits a continuum spectrum, the characterization of the
bi-unitary group is more involved and suitable mathematical tools are needed from the spectral
theory of operators and the theory of rings of operators on Hilbert spaces.

We recall that each commutative (weakly closed) ring of operators C in a Hilbert space,
containing the identity, corresponds to a direct integral of Hilbert spaces.

The following theorems [7] are useful:

Theorem 1. To each direct integral of Hilbert spaces with respect to a measure σon a real
interval �:

H =
∫

�

Hλ dσ(λ),

there corresponds a commutative weakly closed ring C = L∞
σ (�), where to each ϕ ∈ L∞

σ (�)

there corresponds the operator Lϕ : (Lϕξ) = ϕ(λ)ξλ with ξ ∈ H, ξλ ∈ Hλ and ‖Lϕ‖ = ‖ϕ‖∞.

Vice versa:

Theorem 2. To each commutative weakly closed ring C of operators in a Hilbert spaceH there
corresponds a decomposition of H into a direct integral, for which C is the set of operators of
the form Lϕ, ϕ ∈ L∞.

To apply the previous theorems to the ring R(G) generated by the connecting operator G, we
preliminarily remark that

Proposition 2. The weakly closed commutative ring R(G) generated by the connecting
operator G contains the identity.

Proof. Let E0 be the principal identity of G in the ring of all bounded operators B(H): by
definition E0 is the projection operator on the orthogonal complement of the set ker G.

We recall [7] that the minimal weakly closed ring R(G) containing G contains only those
elements A ∈ G′′ which satisfy, like G, the following condition:

E0A = AE0 = A. (7)

Now the positiveness of the operator G ensures that ker G = 0. This implies that
E0 = 1 ∈ R(G). �

Then, by theorem (2), the ring R(G) induces a decomposition of the Hilbert space H into
the direct integral

H =
∫

�

Hλ dσ(λ), (8)

where � = [a, b] contains the entire spectrum of the positive self-adjoint operator G. The
measure σ(λ) in equation (8) is obtained by the spectral family {PG(λ)} of G and cyclic vectors
in the usual way [7].

We remark that it results in R(G) ≡ G′′. Therefore G′′ is commutative.
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Now every operator A from the commutant G′ is representable in the form of a direct
integral of operators

A =
∫

�

A(λ) dσ(λ), (9)

where A(λ) is a bounded operator in Hλ, for almost every λ ∈ �.
Thus the bi-unitary transformations, as they belong to G′, are in general a direct integral

of unitary operators U(λ) acting on Hλ.
In particular, every operator B of the bi-commutant G′′ = R(G) is a multiplication by a

number b(λ) on Hλ, for almost every λ:

B(λ) = b(λ)1λ. (10)

4. Bi-unitary group on an infinite-dimensional Hilbert space

More insight can be gained from a more specific analysis of the direct integral decomposition
of H, which can be written as

H =
∫

�

Hλ dσ(λ) =
⊕

k

∫
�k

Hλ dσ(λ) =
⊕

k

Hk, (11)

where now the spectrum � of G is the union of a countable number of measurable sets �k ,
such that for λ ∈ �k the spaces Hλ have the same dimension nk (nk may be ∞).

The measure σ(λ) is obtained by the measures σk(λ) via the spectral family {PG(λ)} of
G and cyclic vectors uk , with σk(λ) = (PG(λ)uk, uk).

The dimension nk of the spaces Hλ is the analogue of the degeneracy of the eigenvalues
λ of the point part of the spectrum of G.

According to the decomposition of equation (11), any operator A in the commutant G′ is
representable as

A =
⊕

k

∫
�k

A(λ) dσ(λ). (12)

In particular, the connecting operator G is a multiplication by λ on each Hλ, so we get the
following result at once:

Proposition 3. Let two Hermitian structures h1 and h2 be given on the Hilbert space H. Then
there exists a decomposition of H into a direct integral of Hilbert spaces Hλ such that in each
space Hλ the structures h1|Hλ

and h2|Hλ
are proportional: h2|Hλ

= λh1|Hλ
.

Moreover, as G acts like a multiplicative operator on each component space Hλ, the expressions
of h1 and h2 on H are

h1(x, y) =
∑

k

∫
�k

〈xλ, yλ〉λ dσ(λ)

(13)
h2(x, y) =

∑
k

∫
�k

λ〈xλ, yλ〉λ dσ(λ),

where 〈xλ, yλ〉λ is the inner product on the component Hλ.
As a consequence of proposition (3) and equation (12), the elements U of the bi-unitary

group acting on H have the form

U =
⊕

k

∫
�k

Unk
(λ) dσ(λ), (14)

where Unk
(λ) is an element of the unitary group U(nk) for each λ ∈ �k.
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As regards to the notion of two Hermitian forms in generic position, the following
statement [9] holds:

Proposition 4. Two Hermitian structures h1 and h2 are in generic relative position if and
only if the component spaces Hλ of the decomposition of H into a direct integral with respect
to R(G) are one dimensional.

Proof. Let us suppose that two Hermitian forms are given in generic relative position. Then,
by definition (3), R(G) = G′′ = G′, so G′ is commutative and any component operator A(λ)

in equation (12) acts on a one-dimensional component space Hλ, for almost every λ ∈ �.
In order to prove the converse, observe that if R(G) = G′′ 
= G′, then G′ is not

commutative. So a subset �0 of � exists such that dim Hλ > 1 for λ ∈ �0. �

This shows the equivalence of definitions (1) and (3) also in the infinite-dimensional case.
Propositions (3) and (4) extend to infinite-dimensional complex Hilbert spaces some

results of our previous work [6], so that we can say that all quantum dynamical bi-Hamiltonian
systems are pairwise commuting if (and only if) the two Hermitian structures are in generic
relative position.

In the generic case, the unitary component operators Unk
(λ) in equation (14) reduce to a

multiplication by a phase factor exp(iϑ(λ)) on Hλ for almost every λ, so that the elements of
the bi-unitary group read

U =
∫

�

eiϑ(λ) dσ(λ). (15)

Therefore, in the generic case the group of bi-unitary transformations is parametrized
by the σ—measurable real functions ϑ on �. This shows that the bi-unitary group may be
written as

Uϑ = exp(iϑ(G)). (16)

Finally, like in the finite-dimensional case, an equivalence may be stated between the
genericity condition and the cyclicity of the operator G. In fact, we have

Proposition 5. Let G be a bounded positive self-adjoint operator in H. Then G is cyclic if
and only if G′′ = G′.

Proof. Let us suppose G′′ = G′. Then R(G) = G′′ = G′ and G′ is commutative. Hence
the decomposition of the Hilbert space yields one-dimensional component spaces Hλ where
G acts as a multiplication by λ in L2(�, σ). Then the vector x0 = 1/λ is a cyclic vector in
L2(�, σ), so G is cyclic.

Conversely, let G be cyclic. Then each space Hλ is one dimensional and any operator
from G′ acts as a multiplication by a number in Hλ. Hence G′ = R(G) = G′′. �

Summarizing, we have shown the equivalence of definitions (1), (2) and (3) in the infinite-
dimensional case.

5. Compatible structures on a real infinite-dimensional Hilbert space

In the previous section we have analysed the setting of a complex Hilbert space H with two
Hermitian structures h1(., .) and h2(., .) and now, to make contact with real linear Hamiltonian
mechanics [6] on infinite-dimensional spaces, we analyse the consequences of this on real
Hilbert spaces. Besides, the real context displays richer contents and is a more general setting
for the analysis of our geometric structures.
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We start therefore with a real vector space HR (isomorphic to the realification of H).
From the two Hermitian structures on the previous complex Hilbert space, h1(., .) and h2(., .),

we get on HR two metric tensors ga and two symplectic forms ωa via

ga(x, y) = �ha(x, y); ωa(x, y) = �ha(x, y), a = 1, 2.

On HR the multiplication by the imaginary unit appears as the action of a linear operator J ,
J 2 = −1, which is skew-adjoint with respect to both g.

The structures are related by the equation ωa(x, y) = ga(Jx, y) which defines the
admissible triples (ga, ωa, J ).

Then the three linear operators GR = g−1
1 ◦ g2, T = ω−1

1 ◦ ω2 = −J ◦ GR ◦ J and J

are a set of mutually commuting linear operators, GR and T being self-adjoint with respect to
both metric tensors. We remark, by the way, that T is the recursion operator for symplectic
structures.

For instance, to check that [GR, J ] = 0, consider the equation h2(x, y) = h1(Gx, y)

which defines the connecting operator G. Then

h1(Gx, y) = g1(Gx, y) + ig1(JGx, y) = h2(x, y)

= g2(x, y) + ig2(Jx, y) = g1(G
Rx, y) + ig1(G

RJx, y).

This shows, by equating real and imaginary parts, that GR = G and [G, J ] = 0. It is trivial
now that [T ,G] = [T , J ] = 0 as well. By definition this means that these two triples are
compatible [6].

Quantum theory in the usual complex context leads quite naturally to consider identical
complex structures in the two triples. In contrast, in the real context it is possible to consider
the case of two distinct complex structures J1, J2. In other words, on a real Hilbert space HR

let two admissible triples (g1, J1, ω1) and (g2, J2, ω2) be given which are compatible, that is
the commuting operators {G,T , J1, J2} have the correct bi-Hermiticity properties [8].

Now it is possible to complexify HR and to get a complex Hilbert space H1 with a
Hermitian scalar product 〈., .〉1 via (g1, J1, ω1). Since by hypothesis the operators {G,T , J2}
commute with J1, they become complex-linear operators on H1. In particular G becomes a
complex-linear bounded positive self-adjoint operator, therefore G acts as a multiplication by
λ on the component spaces in the associated direct integral decomposition

H =
∫

�

Hλ dσ(λ). (17)

Now J2 commutes with G, i.e. J2 ∈ G′, so J2 is block diagonal on H. In each Hλ, we
have J 2

2 (λ) = −1λ and J
†
2 (λ) = −J2(λ). Then Hλ splits in two parts corresponding to

the eigenvalues ±i of J2(λ) : Hλ = H +
λ ⊕ H−

λ , where on H +
λ : J2 = J1 = i, while on

H−
λ : J2 = −J1 = −i. The direct integral decomposition becomes

H =
∫

�

H +
λ ⊕ H−

λ dσ(λ) = H+ ⊕ H− =
∫

�+
H +

λ dσ(λ) ⊕
∫

�−
H−

λ dσ(λ), (18)

where �+ and �−, subsets of � not necessarily disjoint, are support of H +
λ and H−

λ respectively.
This completely extends the finite-dimensional result in [6].

At this point we can draw a complete picture: starting from two admissible triples
(ga, Ja, ωa), a = 1, 2, on HR we may construct the corresponding Hermitian structures
ha = ga + iωa . We stress that ha is a Hermitian structure on Ha, which is the complexification
of HR via Ja , so that in general h1 and h2 are not Hermitian structures on the same complex
vector space.

When the triples are compatible the decomposition of the space in equation (18) holds,
so that HR can be decomposed into the direct sum of the spaces H+

R and H−
R on which



3820 G Marmo et al

J2 = ±J1, respectively. The comparison of h1 and h2 requires a fixed complexification of
HR, for instance H1 = H+

1 ⊕ H−
1 . Then, using equations (13) and (18), we can write

h1(x, y) =
∫

�+
〈xλ, yλ〉λ dσ(λ) +

∫
�−

〈xλ, yλ〉λ dσ(λ), (19)

while

h2(x, y) =
∫

�+
λ〈xλ, yλ〉λ dσ(λ) +

∫
�−

λ〈yλ, xλ〉λ dσ(λ). (20)

It is apparent that h2 is not a Hermitian structure as it is neither linear nor anti-linear on the
whole space H1.

6. Example: particle in a box, a double case

Consider the operator G = 1 + X2, with X position operator, on L2([−α, α], dx). It is
Hermitian with spectrum � = [1, 1 + α2]. From the spectral family of X:

P(λ)f = χ[−α,λ]f, (21)

where χ[−α,λ] is the characteristic function of the interval [−α, λ], we get the spectral family
PG(λ) of G:

PG(λ) = P(
√

λ − 1) − P(−√
λ − 1). (22)

In fact, by a simple computation it is immediate to check that PG is a projection operator:

P 2
G = PG, PG(0) = 0, PG(α2) = 1. (23)

Furthermore, write G as

G =
∫

[−α,α]
(1 + λ2) dP(λ) =

∫
[−α,0]

(1 + λ2) dP(λ) +
∫

[0,α]
(1 + λ2) dP(λ), (24)

and change the variable putting λ = −√
µ − 1 in the first integral and λ = √

µ − 1 in the
second one. Eventually, the spectral decomposition of G reads

G =
∫

[1,1+α2]
λ dPG(λ), (25)

where PG(λ) is given by equation (22).
Now G does not have cyclic vectors on the whole L2([−α, α], dx), because if f is any

vector, xf (−x) is non-zero and orthogonal to all powers Gnf . In other words G′, which
contains both X and the parity operator, is not commutative.

This argument fails on L2([0, α], dx), where χ[0,α] is cyclic. Analogously, χ[−α,0] is cyclic
on L2([−α, 0], dx), so we get the splitting in two G-cyclic spaces

L2[−α, α] = L2[−α, 0] ⊕ L2[0, α]. (26)

From PG and those cyclic vectors we obtain the measure

σ(λ) = (PG(λ)χ[0,α], χ[0,α]) = √
λ − 1 (27)

for the decomposition of the Hilbert space

H =
∫

[1,1+α2]
Hλ dσ(λ), (28)

where Hλ is one dimensional for the particle in the [0, α] box while it is bi-dimensional for
the [−α, α] box.
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The general case of an asymmetric box [−α, β] is a direct superposition of the two
previous cases, as we have shown in section 4: in fact, assuming β > α for instance, the
decomposition becomes the direct sum of bi-dimensional spaces for the [−α, α] box plus
one-dimensional spaces for the [α, β] box.

The bi-unitary transformations U read

U =
∫

[1,1+α2]
eiϕ(λ) d

√
λ − 1 (29)

in the [0, α] box, and

U =
∫

[1,1+α2]
U2(λ) d

√
λ − 1 (30)

in the [−α, α] box. Finally, in the [−α, β] box:

U =
∫

[1,1+α2]
U2(λ) d

√
λ − 1 ⊕

∫
[1+α2,1+β2]

eiϕ(λ) d
√

λ − 1. (31)

7. Concluding remarks

In this paper we have shown how to extend to the more realistic case of infinite dimensions
the results of our previous paper dealing mainly with finite level quantum systems. Our
approach shows, in the framework of quantum systems, how to deal with ‘pencils of compatible
Hermitian structures’ in the same spirit of ‘pencils of compatible Poisson structures’ [10, 11].
We hope to be able to extend these results to the evolutionary equations for classical and
quantum field theories.
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